PHYSICAL REVIEW E VOLUME 55, NUMBER 6 JUNE 1997

Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations
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The coupling of spatial and temporal symmetry breaking instabilities is studied in a two-variable reaction-
diffusion model describing semiconductor transport. A variety of spatiotemporal patterns corresponding to
pure Hopf and Turing modes, localized patterns, and mixed Turing-Hopf modes including subharmonic spa-
tiotemporal spiking are found. By organizing the results in a time-scale versus space-scale diagram, and by
comparing them with a chemical reaction-diffusion model, it is shown that such behavior is generic for a class
of extended nonlinear dynamic systems near codimension-two Turing-Hopf bifurcations.
[S1063-651%97)09906-9

PACS numbds): 05.45+hb, 72.20.Ht

|. INTRODUCTION years[13—-16. While many models yield Hopf bifurcations
of spatially homogeneous limit cycl¢47], Turing instabili-
Studies of dynamics resulting from the coupling betweerfies are less common in semiconductor transpist18. The
two different instabilities have recently received renewed atProperties of localized structures have been studied theoreti-

tention as new experimental results have become availabl&ally in detail by several group$24-29 in reaction-
In particular, focus has been put on the coupling betweeJ!ffusion systems. Another elementary spatiotemporal pat-

spectively. The interaction of an instability leading to stead ! SN . .
b y y 9 yp-n-p-n diodes[19,2Q andp-i-n diodes[21], or in impurity

spatial structures with a Hopf instability giving rise to tem- ! e . .
poral oscillations indeed yields interesting spatiotempora|mpact lonization breakdow(@2,23, is the spatiotemporal

dynamics, as observed experimentally in fields as diverse a%t)lkrl]ng ".Tll(.)de'g sr:mple, genen(I:l modte{l30].wht|ch dt|§pilays |
hydrodynamic$1,2], resistively coupled electronic oscillator such spiking benhavior, as well as transient spatiotempora
networks[3] or chemical systemp4,5]. Such dynamics are chaos[31], |n.depende.ntly of the gpecmc microscopic trans-
obtained for values of parameters allowing for degenerac ort me_chanlsm that is effective in a pqmcular semiconduc-
between the thresholds of the two instabilities, i.e., near a°" device[32], has been proposed. It is a two-component

codimension-two point. Several analyses have already Clag(_aaction-diffusion system of activator-inhibitor type. Such

sified the different bifurcation scenarios occurring near aactivator—inhibitor systems are widely used in the description

codimension-two steady Hopf poifi6—10]. The predicted of active media, not only in semiconductor transport but also

types of dynamics range from steady Hopf bistability and'" che{nlca(lj rter.:llct(;orj systt'err][533,34]3. trl:.] this ?ape(;.ﬁwe.

localized structures to stationary states mixing spatial orgapresen a detailed investigation ot (his reaction-diifusion

nization and Hopf-type oscillations. Several of these hav odel, and show that one of its characteristic features is the
possibility of a codimension-two Turing-Hopf bifurcation.

been recovered in a chemical reaction-diffusion mdde] We find a rich variety of spatiotemporal patterns near the
featuring interaction between a Hopf instability and a Tu”ngcodimension-two Turing-Hopf point, of which the spiking

instability [11] which gives rise to a steady spatial patterning de i | le. Our findi ¢ the Vi

of the concentrations. Some of these behaviors are relevat Ot € |shony ?nte exam;lj 3' ur fincings supp?cr the view
to experimental observations in the chlorite-iodide-malonic at such spatiotemporal dynamics 1S generic for the cou-
acid reactior[4,5] featuring a codimension-two Turing-Hopf pling of spatial and temporal instabilities in a large class of

; . ; ; - extended nonlinear systems.

point (CTHP). The Turing mechanism of spatial pattern for- Th . ed as foll In sec. Il t
mation relies on the coupling between nonlinear kinetics and € pgperdls ?rgamzde I as do ?V\c’js' ,? I_ec. ' \/tveb}:l)_r[eseln
molecular diffusion. Such a diffusion-driven instability can our semiconauctor model and study 1S finear stabiiity. in
be recovered in other fields like electron-hole plasmas ipec- 11l the d'ff?r_ef?t types of spaﬂote_mporal dyn§m|cs pre-
semiconductors, gas discharge devices, heterogenenous gégted In the vicinity of.a codimension-two Turlng-Hopf
talysis, or semiconductor devices, for examd&]. The aim point are rewewed. Section IV Sh.OWS that.the predmtgd dy-
of this’ paper is to show that thé spatiotemporal dynamic amics can indeed be observed in numerical simulations of
predicted near a CTHP can be recovered in a semiconduct I?e semiconductor model. A comparison with a chemical

model. A comparison of this semiconductor model and of Jeacnon-dlffusmn model is made in Sec. V before we con-

chemical reaction-diffusion model shows that a generic cIasgIUde'

sification of the spatiotemporal dynamics is possible near the
codimension-two Turing-Hopf point.

In semiconductor charge transport, the bifurcation of spa- We study the following dimensionless reaction-diffusion
tiotemporal patterns has been extensively studied in recemstystem[30,31:

Il. LINEAR STABILITY ANALYSIS
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It describes charge transport in a layered semiconductor de-
vice with a bistable current-voltage characteristic with an
internal degree of freedora(x,t), e.g., an interface charge
density, whose dynamics is governed by the nonlinear trans-
port equation1). Equation(2) describes the dielectric relax- 0 . . . . . L
ation of the normalized voltaga(x,t) across the device. j0

Herej, is the normalized external current; which is pro-

portional to 1/C+ Cey), whereC and C,, are the internal FIG. 1. Bifurcation parametey as a function of the physical
and a parallel external capacitances, respectively, defines thgntrol parametey,. The inset shows the normalized static current-
time scale)D is an effective diffusion constant; afidis an  voltage characteristic fof =0.05.

internal system parameter. The variabl@cts as an activa-
tor, andu acts as an inhibitor in terms of nonlinear dynamicsof the two intrinsic length scales ofanda), and the system
[33]. In terms of the semiconductor model the quantitysizelL. The parametef =0.05 will be kept fixed throughout
u—a corresponds to the current density which is the physicathe following.
quantity of interest. Throughout the paper all variables are The roots of Eq(4) yield the dispersion relation
measured in dimensionless units.

Under current control, i.e., fixed control paramejtgrthe N AK) =3[0 VOZ—4A]. 9
model has a unique homogeneous fixed point

0.05

Modes with Rel)>0 are unstable. We use Neumann
io ) boundary conditionga/dx=du/dx=0 for x=0 andL. The
a*:m, u*=jo+a*. (3 Neumann boundary conditions allow only cosine modes
0 coskx), wherek=nm/L with integern. For those unstable
To perform a linear stability analysis, we linearize the dy-medes the real and imaginary partsiofare plotted versus
namic systentl)-(2) around the spatially homogeneous fixed K for different values ofx andj, in Figs. 4a) and 2b). It
point (3) for small space- and time-dependent fluctuationscan be seen that instabilities occur in two rangek vhlues

(5a,5u)~exp(t+ikx), and obtain the characteristic equa- aroundk=0 (Hopf modes and around a finite valuk=k
tion (Turing modes The homogeneous steady state becomes un-

stable against the homogeneous madkie 0, and then
AN2—ON+A=0, (4) evolves toward a spatially homogeneous limit cycle when
the bifurcation parametey (or equivalentlyj) is increased
where above the Hopf threshold of instability,

O(k)=y—T—a—(D+1)k? (5) Y=a+T. (10)

©6) At the bifurcation point, the frequency of these temporal os-

A(K)=aT+(a—yD+DT)k?*+Dk*
(k=aT+(a=y ) ’ cillations is given byw.=Im(\)= VA (k=0), i.e.,

ith
i w.=VaT. 1y
= £ 7 A Turing instability occurs above the Turing threshold
Y=72 2" (7)
(jot1)
1/212
The physical control parameter of the system is the current Y =T+ D ' (12

density jo. To simplify the formalism, we will use the pa-

rametery as the bifurcation parameter. The physical paramieading to the bifurcation of stationary spatially periodic pat-
eter jo can always easily be found onceis fixed. Note, terns characterized by the intrinsic wave vedtgmwith
however, that the relation

5 aT 1/2
2=(1+1-89)/(2y)-1 (®) ke=\p (13

yields two positive values of, in the range & y<3, since  In Fig. 3, the curves at which the Hopf and Turing instabili-
v(jo) is nonmonotonic(see Fig. 1L As additional control ties occur are plotted in thex(j,) control parameter space
parameters we will use the ratioof the time scales i and  for fixed T=0.05 andD = 8. Below the full line(Hopf bifur-

u (which can be varied by changing the external capagitor cation) the homogeneous steady state is unstable with respect
the effective diffusion constam (which is the squared ratio to homogeneous temporal oscillations, and below the dashed
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line (Turing instability it is unstable with respect to station- If D<D., it follows from Egs.(10) and (12) that y"< 4T,

ary spatially periodic patterns. In the overlap of both insta-and, hence, with increasing (corresponding to increasing

bility regimes there is a competition between temporal and, nearC,, or decreasing, nearC,), the Hopf threshold is

spatial symmetry-breaking instabilities. This can lead to arthe first to be crossed and hence the Hopf instability will be

interaction of both types, producing particularly complexthe first to occur near criticality. ID>D_, on the contrary,

spatiotemporal patterns if the thresholds for both instabilitieshe first bifurcation will occur toward Turing patterns. For

occur close to each other. This is the case in the vicinity ofixed D, codimension-two Turing-Hopf points occur at

degenerate pointgnarked byC; andC,), where the Hopf

and the Turing bifurcations coincide: these are called

codimension-two Turing-Hopf point€THP’s), because two _4DT

control variables are necessary to fix these bifurcation points e (D-1)% (16)

in a generic system of equations. At the codimension-two

Turing-Hopf points C;, C,), we have y'=+"; in other

words, which yields the two points @; and C,) at a.~0.033
marked in Fig. 3. Ifa<ea., with increasingj,, the Hopf

a\? bifurcation is the first to occur. Fat> a, on the contrary,

D the Turing bifurcation appears first. This can be seen more

clearly in the inset of Fig. 3, which shows the region near

For a givena, this condition is satisfied for the critical value Cj in an enlarged scale.

2

T+

at+T= (14)

of D: In summary, there is a one-parameter family of CTHP’s if
we consider the control parameters D, andj, as adjust-
T\Y2 [T\Y2]-2 able parameters. The projections of this curve onto the three
De=||1+2) —13 (15  coordinate planes ina, D, jo) control parameter space is
shown in Fig. 4. We would like to see now which dynamics
will be observed in the semiconductor model near a CTHP.
0.15 T . T Let us first review the dynamics predicted theoretically.
" Turing %
; o 0.0817
0.10f '.' ‘\‘ 0.02) ]
o ; Hopf o
; - LN
0.0} \\1.16 1.20 o 124 0.04
Cl C2
0 L LT
1 2 3 4 0

Jo

FIG. 3. Instability regimes in thed,jo) control parameter dia-
gram forT=0.05 andD=8. The full and dashed lines denote the
Hopf bifurcation and the Turing instability, respectively. The
codimension-two Turing-Hopf pointSCTHP) are marked byC, FIG. 4. Projections of the curve of CTHP’s onto the three coor-
andC,. The inset shows the vicinity df, in an enlarged scale. dinate planes of thed,D,]j,) control parameter spacé € 0.05).
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T My FIG. 5. Regimes of diferent
o Localized structures (1.g) 26500 asymptotic spatiotemporal behav-
t ior near the CTHP bifurcation
ooel — I . . - 25500 given by the lineD/D,=1. The
L symbols in the &,D/D.) control
o o oo % o° ° 0 200 X 400 600 .
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42500 4 ) 1 Hopf structures(diamond$. (For
wae AT parameters, see Table I.
0 200 X 400 600 400 600
. SPATIOTEMPORAL DYNAMICS NEAR THE [40], or also in short, a sulb- mode. This mixed solution
CODIMENSION-TWO TURING-HOPF POINT corresponds to a spatial structure with two wave numbers

Near the CTHP, the linear stablht_y a_maly5|s thus feature w[k/2]). An analogous subharmonic instability can also
degeneracy between a real root vanishing for a wave numb ccur if the system is originally in a pure Hopf state with

ke and a pair of complex conjugate roots with zero real pargrequencyw, . If the control parameter is increased, a reso-

and frequency w.. Several analysed6-10Q in one- pant interaction between this Hopf mode and the subhar-
dimensional systems have already studied the bifurcatiof,gnic mode k[ /2], w/2) can occur. The stable solution
scenarios resulting from the interaction of the related mOdesresulting from this interaction is then a subharmonic Hopf
i.e., the spatial Turing mode characterized by the wavep,ixed modg10], or in short a sutid mode characterized by
number frequency couplek{,0) and the temporal Hopf 0 frequencies ¢. and w,/2) and one wave number
mode (Ow.). Let us briefly review these bifurcations (K[w/2]). In the particular case wherd w /2] is of the
schemes as they will be used to classify the spatiotemporg),qer of the subharmonic wave number of the Turing
dynamics observed numerically in the semiconductor mOdelmode, i.e.k~k//2, another mixed state with two wave num-

In the vicinity of a CTHP, the bifurcation scenarios can bepq .« k[ w/2] and Z~k,) and two frequenciesdf, and

divided into two main groups. The first one gathers the dy-,, /5y can be observed. This mixed solution is coined a sub-

namics resulting from the interaction between the Turingyarmonic Turing-Hopf modL0] or also a sub-HT mode as

mode ,0) and the Hopf mode (). It has been shown i oqits from the resonance near the CTHP of aldumode
[6,8,9], using amplitude equations formalisf85], that the f':md a Turing mode.

competition between these two modes can lead to three dif- |, short, the spatiotemporal dynamics near a CTHP fea-

ferent solutions which are the pure Turing structure, the pur, e ejther bistability between steady structures and temporal
Hopf oscillation, and a mixed modé{, ) consisting of & oqijiations or various mixed states ranging from the simple
Turing pattern oscillating globally in tim36]. Depending 1 ring-Hopf mixed mode to different types of subharmonic
on the specific parameters of the systgt0], the relative  ages. Let us note that, in large systems, each of these so-

stability of these three solutions leads to two bifurcation sceytions can undergo phase instabilities for given values of the
narios: either the mixed mode is always unstable while the,, .- 1eters giving rise to spatiotemporal chaos. The

Turing and Hopf states are bistable in a given domain of thgsgpiamin-Feir and Eckhaus instabilities are the well-known
control parameter, or the mixed mode is stable for values of,5<e instabilities of the pure Hopf and Turing modes, re-
parameters for which the Turing and Hopf modes are botly,qiyely[35]. Conditions have also been given for which

unstable. The coupling between the Turing and the Hopf,o Turing-Hopf mixed modé36] and the subF mode[40]
modes thus leads to either Turing-Hopf bistability or a mixedpo-ome chaotic due to a phase instability.

mode with one wave number and one frequency.

The second main group of dynamics near the CTHP re-
sults from subharmonic instabiliti¢87—4Q of the pure Tur-
ing or Hopf modes. Let us first consider the Turing mode
with wave numbek;. Close to the CTHP, its subharmonic
mode with wave numbek./2 may have a complex linear Let us now verify if the different predicted types of dy-
eigenvalue with a small growth rate and a frequencynamics can be recovered in modél$ and(2). These equa-
w[k./2]. Near the CTHP, a resonant interaction between theions are solved using finite differences and a forward Euler
two modes k.,0) and k./2,0[k./2]) can give rise to a algorithm. A systematic overview of the different dynamical
stable mixed state called a subharmonic Turing mixed modéehavior can be gained by investigating the various regimes

é}(c and Kk./2) oscillating in time with one frequency

IV. SPATIOTEMPORAL DYNAMICS
IN A SEMICONDUCTOR MODEL
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FIG. 6. Localized structures near the CTHP
C, for T=0.05, «=0.02, D=8 (corrresponding
to D/D.=0.67), jo=3.1, and different initial
conditions:(a) Turing-Hopf front.(b) Turing do-
main embedded between two Hopf stalesLo-
14000 calized Turing-Hopf structures. The current den-

1 sity j(x,t) is shown as a density plot and as a
three-dimensional representation.
120001

10000
0 400 600 0 200 X400 600 0 200 X 400 600

(a) (b) (©

in a diagram ofa versusD/D. (Fig. 5). In physical units, («,D/D.) diagram[Figs. §f) and 5g)] or when the bifur-
this diagram corresponds to the ratio of time scatgbr,  cation parametei, is further increased. In particular, the
versus the ratio of the squared length scafg of the two  bistability between Turing and Hopf modes predicted theo-
variablesa and u, respectively. By normalizind by its  retically is obtained for several values of parameters. In the
critical value D.(a) for each «, we transform all bistability regime, localized Turing-Hopf structures such as
codimension-two Turing-Hopf points onto the straight line droplets of one state embedded into the other or fronts be-
D/D.=1. As discussed before, f@/D.>1 the Turing in-  tween a Turing pattern and an oscillating region are com-
stability occurs first with increasing,, while for D/D <1 monly observed3,4,10. In Fig. 5f), a spiking “droplet” is

the Hopf bifurcation occurs first. Therefore, on the right-embedded in a Turing structure, and in Figg)5a Turing
hand side of the diagram, the Turing modes are expected t§rycture is embedded in a complex oscillating state. For
be d_ominant near criticality, while on the Ie_ft-hf_;md side thisy,ch largetj, in the vicinity of the second CTHE,, spatial
applies to the Hopf modes. For various points in the paramgeyistence of a Hopf oscillation and a Turing structure are
eter space of F'g‘. 5 mod(al).—(Z) has bgen mtegratgd start- obtained(Fig. 6). Depending upon the initial conditions, dif-
ing from random initial conditions. Typical space-time plots ferent localized structures occur: a Turing-Hopf front with a

which are observed at differefy values near the Turing- fixed boundary between the two phagéig. 6a)], Turing

Hopf pointC; (Fig. 3) are shown as insets. It should, how- . )
ever, be noted that depending upon the initial conditions, thgomalns embedded between two Hopf stifeig. 6b)], or

obtained asymptotic behavior can be quite differentolf alternating sequences of localized Hopf and Turing domains

and thusy, is chosen above the first instability threshold [';']g' GEC)] are found.tS|m|Izi{1_r beijhfz:vpr has tieen ;O;]nd n
M or 4T, andD/D, is sufficiently far from the Turing-Hopf CtNer two-component reaction-diffusion systeri&4,10.

point (D/D.=1), then the only patterns found are indeedS“Ch localized, coexisting_strgctur_e; indicate that .in this
pure Hopf oscillationgFig. 5a)] (for D/D.<1) or Turing  'a2nge of parameters there is blstablllty_b_etweer_1 Tgnng and
structures[Fig. 5b)] (for D/D>1). If D/D, approaches Hopf modes, in contrast to the mode mixing which |s.effec—
unity, the spatial and temporal modes may interact leading t§ve at lower values, near the CTH®,. It may be conjec-
the various types of dynamics predicted theoretically. Thdured that this different behaviour is related to the asymmetry
Turing-Hopf mixed mode with one wave number and oneOf the reaction term in Eq(l), as discussed in Ref30].
frequency is recovered near the codimension-two [sme  There it was noted, for a slightly different model with only
Fig. 5d)]. In large systems, the temporal oscillations of theone diffusion length and a global coupling term, that the
mixed mode might not be exactly in phase, as shown in Figcondition for spatial coexistence of two bistable homoge-
5(c). Some of the subharmonic mixed states have also beeieous phases is satisfied at a valueugf on the left-hand
obtained in our semiconductor model. Figur@)5presents side of the bistability range of thig(u) characteristic, while
an example of the sub-HT mode characterized by two wavepiking, in contrast, was only found on the very right-hand
numbers and two frequencies. The original frequengynd  edge of the characteristic. In fadf;, where spiking and
wave vectork, are still visible in the alternating spatial and mixed modes occur, is located aj @value in the right-hand
temporal shift of the pattern by one period in space and ircorner of the characteristicf. the inset of Fig. L while
time. This is the periodic spatiotemporal spiking mode whichC,, where localized bistable structures are found, lies in the
was found and discussed previoudlyl]. We have now left-hand corner close to the coexistence vaiyg of the
gained a more profound understanding of its nature. It natumodel with one length scale. The asymmetry of mods
rally appears due to the interaction of spatial and temporal2) can be seen by plotting the period of homogeneous tem-
symmetry breaking instabilities close to CTHP’s. poral oscillations for two different values af (see Fig. 7.
Other types of dynamics occur at other points in theThe period of the oscillations varies strongly above the Hopf
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FIG. 7. Period of the temporal oscillations as a functiofdor bil ) ¢ ) f . ¢
two values ofa. These periods are obtained by integrating models, FIG. 8. Stability regimes of various patterns as a function o

(1) and (2) without diffusion such that the Hopf instability is the 10 for T=0.05, «=0.02, andD =8. “mix" stands for the Turing-
only one possible. Hopf mixed mode with one wave number and one frequency. Note

that localized structure§‘loc. struc.”) are observed for values of

. o . parameters where the Turing and Hopf modes are bistable.
thresholdC, and this variation increases when is de-

creased.

A detailed analysis of a bifurcation scenario as a functiorfhen decreased, this wavelength increases strongly, and can
of j, is made in Fig. 8 for a given set of parameteraind become almost twice the one predicted by the linear stability
D and summarizes the above explanations. The stabilithalysis in the vicinity ofC,. This explains why all spa-
range of the different spatiotemporal patterns is schematiiotemporal dynamics slightly abov@, exhibit periods and
cally indicated. The Hopf oscillation persists throughout thewavelengths much greater than those predicted by the linear
range ofj, values between the two Hopf bifurcatiofs. stability analysis. By choosing different initial conditions,
Fig. 3. In the immediate vicinity of the thresholds;, and  multistability between some of these patterns can be realized
C,, the period of the oscillations is that given by the linearas indicated. In general, all mixed modes disappear in favor
stability analysigcompare the values fas, andk. found by  of either a Hopf or a Turing mode if the parametersaand
linear stability analysis at the Hopf or Turing instability, re- D are sufficiently far from the CTHP's.
spectively, and the corresponding temporal and spatial peri- Further, it should be noted that the asymptotic patterns are
ods7.=27/w, and A =2m/K, listed in Table ), while this  preceded in general by transient spatiotemporal chaos when
period increases strongly nege=1.25(see Fig. 7. The sub-  random initial conditions are used, as analyzed in detail by
harmonic Hopf-Turing(sub-HT) spiking mode exists only Wacker, Bose, and Schd31], and that the transient times
for low values ofj nearC;, and localized structures and the are often so long that the asymptotic state is not observed.
pure Turing mode are found at higher values néarNote = However, as pointed out before, all the different dynamics
that as the localized structures are due to a Turing-Hopf biebserved can exhibit phase instabilities under certain condi-
stability, they exist in the range df, for which the pure tions. A nonlinear stability analysis giving the conditions for
Turing and Hopf modes are both observed. The Turing-Hopthe occurrence of these phase instabilities in terms of the
mixed mode with one wave number and one frequency apparameters of our model should be performed in order to see
pears in a wide intermediate range between these two endshether these spatiotemporal chaotic regimes are only long
We have noticed that, nef,, the wavelength of the Turing transients or if they describe intrinsic dynamics of the sys-
mode is that given by the linear stability analysis.jifis  tem.

TABLE |. Parameters used in the simulatios=600 andT=0.05 everywhere o, and 7, are the
critical Hopf frequency and period, respectiveky. is the critical Turing wave number, antl, the corre-
sponding wavelength.

a D D/D. jo ¢ Te k¢ A

Fig. 5a) 0.0250 8.0000 0.81 1.2500 0.0354 178 0.1118 56.2
(b) 0.0200 14.2993 1.20 1.1912 0.0316 199 0.0914 68.7
(©) 0.0300 8.6352 1.01 1.2247 0.0387 162 0.1148 54.7
(d) 0.0381 8.0000 1.12 1.2500 0.0436 144 0.1242 50.6
(e) 0.0100 10.7245 0.49 1.1622 0.0224 281 0.0826 76.0
(f) 0.0200 12.0353 1.01 1.1851 0.0316 199 0.0955 65.8
(9) 0.0200 12.5120 1.05 1.1838 0.0316 199 0.0946 66.5

Fig. 6 0.0200 8.0000 0.67 3.1000 0.0316 199 0.1057 59.4

Fig. 8 0.0200 8.0000 0.67
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TABLE II. Comparison between the semiconductor activator-inhibitor system and the Brusselator chemi-
cal reaction-diffusion system.

Semiconductor Brusselator
Bifurcation parameter y B
Ratio of diffusion coefficients D Dx/Dy=0
Hopf threshold WM=T+a B"=1+A2
Hopf frequencyw, VaT A
Turing threshold w2 BT=(1+A\0)?
Y=|T+ —)
D
Turing wave numbek? oT A
D VD,D,
Codimension-two Turing-Hopf point De=[(\NT+a—T)/Ja] 2 o=[(VI+AZ-1)/A?)?
V. COMPARISON WITH THE BRUSSELATOR behavior might suggest that independently of the character-
MODEL istics of the reaction-diffusion system at hand, the spatiotem-

poral dynamics in the vicinity of a CTHP might be classified

The behavior found in the reaction-diffusion mod#})- ) . - . .
Igenencally in a “time scale” versus “space scale” plane.

(2) is quite similar to that obtained for the Brusselator mode
of chemical active medip41]

dX=A—(B+1)X+X?Y+D,V?X, VI. CONCLUSION

3.Y=BX—X2Y+D.V2Y 17) Starting from a generic semiconductor model which de-

! y ' scribes charge transport through a semiconductor device, we
whereX and Y are the concentrations of two intermediate Showed that the interaction of the two instabilities occurring
chemical speciesh andB are the concentrations of the re- in this model(Hopf and Turing yields complex spatiotem-
actants that are kept constant, adgd andD, are diffusion poral patterns. As a result we can f|r_1d a variety _qf interesting
constantsB is the control parameter. A straightforward com- Patterns which are the result of either bistability between
parison between the Brusselator modél) and the semicon- 14ring and Hopf patterns or a mixing of these modes. Some
ductor modek1)-(2) can be achieved if we consider the fol- of these structures, like the subharmonic Turing-Hopf spik-

lowing equivalences: ing mixed states, have already been observed experimentally
in p-i-n diodes[21], but for the localized patterns and the
Ja=A, (18  Turing-Hopf mixed mode there is, to the best of our knowl-
edge, no experimental evidence yet. It is difficult to detect
D=1/o. (19 such structures in semiconductor experiments, because of the

small size of the system and the high spatial and temporal
The corresponding thresholds of instabilities and other charesolution required. However, because of the direct modula-
acteristics of the two systems are given in Table Il. Thetion of the total current by those spatiotemporal patterns, the
Brusselator also generically exhibits both Turing and Hopfrich variety of possible spatiotemporal modes should be of
instabilities, and hence allows for a CTHP. An importantconsiderable interest with respect to potential applications,
difference between the two models is that, in the Brusselatoe.g., like tunable semiconductor oscillators.
once @A,/ o) is fixed, one has only one CTHP while in the  The stability of the different spatiotemporal dynamics ob-
semiconductor model two CTHP’s exist for given values ofserved near the codimension-two Turing-Hopf point in the
(a,DID). semiconductor model can be explained in the framework of

Recently, the spatiotemporal dynamics occurring in thehe amplitude equations formalisfi0]. These types of dy-

Brusselator near the CTHP has also been studiédl It is  namics are hence generic of the CTHP, and are qualitatively
interesting to note that, there, bistabilitgsnd related local- similar to those observed near a CTHP in a chemical
ized structuresand simple as well as the subharmonic mixedreaction-diffusion model; however some structures which
modes have also been observed. In that case the spatioteoccur in the chemical model, e.g., the subharmonic Turing
poral self-organization is that of chemical concentrationamixed mode, have not yet been found in our semiconductor
rather than of the current density in our model. In the Brus-model. Another difference is the large variation of the spatial
selator, the spatiotemporal dynamics near the CTHP hawsavelength and of the temporal period near the first bifurca-
been classified in tha versusa/o control parameter space tion pointC, in the semiconductor model, an effect which is
whereo=D,/Dy, i.e., in the “time scale” versus “space not observed in the chemical model.
scale” plane. Strikingly, this classification presents strong We propose that a time-scale versus length-scale diagram
similarities with the one shown for our semiconductor modelmight be an appropriate way for organizing the comparison
in Fig. 5. As an example, the successive bifurcations disof other models featuring codimension-two Turing-Hopf
played in Fig. 8 are analogous to some observed in the Brugoints because it separates out the different scales which re-
selator modelsee Fig. 12 of Ref[10]). This similarity of  flect the spatial character of the Turing mode and the tempo
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ral character of the Hopf mode. In this sense, this type of ACKNOWLEDGMENT
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