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Generic spatiotemporal dynamics near codimension-two Turing-Hopf bifurcations
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The coupling of spatial and temporal symmetry breaking instabilities is studied in a two-variable reaction-
diffusion model describing semiconductor transport. A variety of spatiotemporal patterns corresponding to
pure Hopf and Turing modes, localized patterns, and mixed Turing-Hopf modes including subharmonic spa-
tiotemporal spiking are found. By organizing the results in a time-scale versus space-scale diagram, and by
comparing them with a chemical reaction-diffusion model, it is shown that such behavior is generic for a class
of extended nonlinear dynamic systems near codimension-two Turing-Hopf bifurcations.
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I. INTRODUCTION

Studies of dynamics resulting from the coupling betwe
two different instabilities have recently received renewed
tention as new experimental results have become availa
In particular, focus has been put on the coupling betw
instabilities breaking spatial and temporal symmetries,
spectively. The interaction of an instability leading to stea
spatial structures with a Hopf instability giving rise to tem
poral oscillations indeed yields interesting spatiotempo
dynamics, as observed experimentally in fields as divers
hydrodynamics@1,2#, resistively coupled electronic oscillato
networks@3# or chemical systems@4,5#. Such dynamics are
obtained for values of parameters allowing for degener
between the thresholds of the two instabilities, i.e., nea
codimension-two point. Several analyses have already c
sified the different bifurcation scenarios occurring nea
codimension-two steady Hopf point@6–10#. The predicted
types of dynamics range from steady Hopf bistability a
localized structures to stationary states mixing spatial or
nization and Hopf-type oscillations. Several of these ha
been recovered in a chemical reaction-diffusion model@10#
featuring interaction between a Hopf instability and a Turi
instability @11# which gives rise to a steady spatial patterni
of the concentrations. Some of these behaviors are rele
to experimental observations in the chlorite-iodide-malo
acid reaction@4,5# featuring a codimension-two Turing-Hop
point ~CTHP!. The Turing mechanism of spatial pattern fo
mation relies on the coupling between nonlinear kinetics
molecular diffusion. Such a diffusion-driven instability ca
be recovered in other fields like electron-hole plasmas
semiconductors, gas discharge devices, heterogenenou
talysis, or semiconductor devices, for example@12#. The aim
of this paper is to show that the spatiotemporal dynam
predicted near a CTHP can be recovered in a semicondu
model. A comparison of this semiconductor model and o
chemical reaction-diffusion model shows that a generic c
sification of the spatiotemporal dynamics is possible near
codimension-two Turing-Hopf point.

In semiconductor charge transport, the bifurcation of s
tiotemporal patterns has been extensively studied in re
551063-651X/97/55~6!/6690~8!/$10.00
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years@13–16#. While many models yield Hopf bifurcation
of spatially homogeneous limit cycles@17#, Turing instabili-
ties are less common in semiconductor transport@15,18#. The
properties of localized structures have been studied theo
cally in detail by several groups@24–29# in reaction-
diffusion systems. Another elementary spatiotemporal p
tern, which has been observed experimentally in vario
different semiconductor devices, e.g., layered structures
p-n-p-n diodes@19,20# andp-i -n diodes@21#, or in impurity
impact ionization breakdown@22,23#, is thespatiotemporal
spiking mode. A simple, generic model@30# which displays
such spiking behavior, as well as transient spatiotemp
chaos@31#, independently of the specific microscopic tran
port mechanism that is effective in a particular semicond
tor device@32#, has been proposed. It is a two-compone
reaction-diffusion system of activator-inhibitor type. Su
activator-inhibitor systems are widely used in the descript
of active media, not only in semiconductor transport but a
in chemical reaction systems@33,34#. In this paper we
present a detailed investigation of this reaction-diffusi
model, and show that one of its characteristic features is
possibility of a codimension-two Turing-Hopf bifurcation
We find a rich variety of spatiotemporal patterns near
codimension-two Turing-Hopf point, of which the spikin
mode is only one example. Our findings support the vi
that such spatiotemporal dynamics is generic for the c
pling of spatial and temporal instabilities in a large class
extended nonlinear systems.

The paper is organized as follows. In Sec. II, we pres
our semiconductor model and study its linear stability.
Sec. III, the different types of spatiotemporal dynamics p
dicted in the vicinity of a codimension-two Turing-Hop
point are reviewed. Section IV shows that the predicted
namics can indeed be observed in numerical simulation
the semiconductor model. A comparison with a chemi
reaction-diffusion model is made in Sec. V before we co
clude.

II. LINEAR STABILITY ANALYSIS

We study the following dimensionless reaction-diffusio
system@30,31#:
6690 © 1997 The American Physical Society
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]u~x,t !

]t
5a@ j 02~u2a!#1D

]2u

]x2
. ~2!

It describes charge transport in a layered semiconductor
vice with a bistable current-voltage characteristic with
internal degree of freedoma(x,t), e.g., an interface charg
density, whose dynamics is governed by the nonlinear tra
port equation~1!. Equation~2! describes the dielectric relax
ation of the normalized voltageu(x,t) across the device
Here j 0 is the normalized external current;a, which is pro-
portional to 1/(C1Cext), whereC andCext are the internal
and a parallel external capacitances, respectively, define
time scale;D is an effective diffusion constant; andT is an
internal system parameter. The variablea acts as an activa
tor, andu acts as an inhibitor in terms of nonlinear dynam
@33#. In terms of the semiconductor model the quant
u2a corresponds to the current density which is the phys
quantity of interest. Throughout the paper all variables
measured in dimensionless units.

Under current control, i.e., fixed control parameterj 0, the
model has a unique homogeneous fixed point

a*5
j 0

T~ j 0
211!

, u*5 j 01a* . ~3!

To perform a linear stability analysis, we linearize the d
namic system~1!-~2! around the spatially homogeneous fix
point ~3! for small space- and time-dependent fluctuatio
(da,du);exp(lt1ikx), and obtain the characteristic equ
tion

l22Ql1D50, ~4!

where

Q~k!5g2T2a2~D11!k2, ~5!

D~k!5aT1~a2gD1DT!k21Dk4, ~6!

with

g5
j 0
221

~ j 0
211!2

. ~7!

The physical control parameter of the system is the cur
density j 0. To simplify the formalism, we will use the pa
rameterg as the bifurcation parameter. The physical para
eter j 0 can always easily be found onceg is fixed. Note,
however, that the relation

j 0
25~16A128g!/~2g!21 ~8!

yields two positive values ofj 0 in the range 0,g, 1
8, since

g( j 0) is nonmonotonic~see Fig. 1!. As additional control
parameters we will use the ratioa of the time scales ofa and
u ~which can be varied by changing the external capacit!,
the effective diffusion constantD ~which is the squared ratio
e-
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of the two intrinsic length scales ofu anda), and the system
sizeL. The parameterT50.05 will be kept fixed throughou
the following.

The roots of Eq.~4! yield the dispersion relation

l1,2~k!5 1
2 @Q6AQ224D#. ~9!

Modes with Re(l).0 are unstable. We use Neuman
boundary conditions]a/]x5]u/]x50 for x50 andL. The
Neumann boundary conditions allow only cosine mod
cos(kx), wherek5np/L with integern. For those unstable
modes the real and imaginary parts ofl are plotted versus
k for different values ofa and j 0 in Figs. 2~a! and 2~b!. It
can be seen that instabilities occur in two ranges ofk values
aroundk50 ~Hopf modes! and around a finite valuek5kc
~Turing modes!. The homogeneous steady state becomes
stable against the homogeneous modek50, and then
evolves toward a spatially homogeneous limit cycle wh
the bifurcation parameterg ~or equivalentlyj 0) is increased
above the Hopf threshold of instability,

gH5a1T. ~10!

At the bifurcation point, the frequency of these temporal o
cillations is given byvc5Im(l)5AD(k50), i.e.,

vc5AaT. ~11!

A Turing instability occurs above the Turing threshold

gT5FAT1S a

D D 1/2G2, ~12!

leading to the bifurcation of stationary spatially periodic p
terns characterized by the intrinsic wave vectorkc with

kc
25S aT

D D 1/2. ~13!

In Fig. 3, the curves at which the Hopf and Turing instab
ties occur are plotted in the (a, j 0) control parameter spac
for fixedT50.05 andD58. Below the full line~Hopf bifur-
cation! the homogeneous steady state is unstable with res
to homogeneous temporal oscillations, and below the das

FIG. 1. Bifurcation parameterg as a function of the physica
control parameterj 0. The inset shows the normalized static curre
voltage characteristic forT50.05.
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FIG. 2. Dispersion relation for
different values of~a! g ~equiva-
lently j 0) and ~b! a. Re(l) ~full
circles! and Im(l) ~open circles!
are plotted vs the wave vecto
k5np/L in units ofp/L only for
unstable modes. In~a! a50.02
and in ~b! j 051.25 are fixed.
(D58, T50.05, andL5600.)
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line ~Turing instability! it is unstable with respect to station
ary spatially periodic patterns. In the overlap of both ins
bility regimes there is a competition between temporal a
spatial symmetry-breaking instabilities. This can lead to
interaction of both types, producing particularly compl
spatiotemporal patterns if the thresholds for both instabili
occur close to each other. This is the case in the vicinity
degenerate points~marked byC1 andC2), where the Hopf
and the Turing bifurcations coincide: these are cal
codimension-two Turing-Hopf points~CTHP’s!, because two
control variables are necessary to fix these bifurcation po
in a generic system of equations. At the codimension-t
Turing-Hopf points (C1, C2), we havegT5gH; in other
words,

a1T5FAT1S a

D D 1/2G2. ~14!

For a givena, this condition is satisfied for the critical valu
of D:

Dc5F S 11
T

a D 1/22S Ta D 1/2G22

. ~15!

FIG. 3. Instability regimes in the (a, j 0) control parameter dia-
gram forT50.05 andD58. The full and dashed lines denote th
Hopf bifurcation and the Turing instability, respectively. Th
codimension-two Turing-Hopf points~CTHP! are marked byC1

andC2. The inset shows the vicinity ofC1 in an enlarged scale.
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If D,Dc , it follows from Eqs.~10! and ~12! that gH,gT,
and, hence, with increasingg ~corresponding to increasin
j 0 nearC1, or decreasingj 0 nearC2), the Hopf threshold is
the first to be crossed and hence the Hopf instability will
the first to occur near criticality. IfD.Dc , on the contrary,
the first bifurcation will occur toward Turing patterns. Fo
fixed D, codimension-two Turing-Hopf points occur at

ac5
4DT

~D21!2
, ~16!

which yields the two points (C1 and C2) at ac'0.033
marked in Fig. 3. Ifa,ac , with increasingj 0, the Hopf
bifurcation is the first to occur. Fora.ac , on the contrary,
the Turing bifurcation appears first. This can be seen m
clearly in the inset of Fig. 3, which shows the region ne
C1 in an enlarged scale.

In summary, there is a one-parameter family of CTHP’s
we consider the control parametersa, D, and j 0 as adjust-
able parameters. The projections of this curve onto the th
coordinate planes in (a, D, j 0) control parameter space i
shown in Fig. 4. We would like to see now which dynami
will be observed in the semiconductor model near a CTH
Let us first review the dynamics predicted theoretically.

FIG. 4. Projections of the curve of CTHP’s onto the three co
dinate planes of the (a,D, j 0) control parameter space (T50.05).
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FIG. 5. Regimes of different
asymptotic spatiotemporal behav
ior near the CTHP bifurcation
given by the lineD/Dc51. The
symbols in the (a,D/Dc) control
parameter space denote vario
types of space-time patterns whic
are illustrated by typical space
time plots of j (x,t) as insets:~a!
Hopf oscillations ~squares!, ~b!
Turing patterns~dots!, ~c! and ~d!
Turing-Hopf mixed modes~tri-
angles!, ~e! subharmonic Turing-
Hopf mode consisting of spa
tiotemporal spiking ~asterisks!,
and ~f! and ~g! localized Turing-
Hopf structures~diamonds!. ~For
parameters, see Table I.!
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III. SPATIOTEMPORAL DYNAMICS NEAR THE
CODIMENSION-TWO TURING-HOPF POINT

Near the CTHP, the linear stability analysis thus featu
degeneracy between a real root vanishing for a wave num
kc and a pair of complex conjugate roots with zero real p
and frequency vc . Several analyses@6–10# in one-
dimensional systems have already studied the bifurca
scenarios resulting from the interaction of the related mod
i.e., the spatial Turing mode characterized by the wa
number frequency couple (kc,0) and the temporal Hop
mode (0,vc). Let us briefly review these bifurcation
schemes as they will be used to classify the spatiotemp
dynamics observed numerically in the semiconductor mo

In the vicinity of a CTHP, the bifurcation scenarios can
divided into two main groups. The first one gathers the
namics resulting from the interaction between the Tur
mode (kc,0) and the Hopf mode (0,vc). It has been shown
@6,8,9#, using amplitude equations formalism@35#, that the
competition between these two modes can lead to three
ferent solutions which are the pure Turing structure, the p
Hopf oscillation, and a mixed mode (kc ,vc) consisting of a
Turing pattern oscillating globally in time@36#. Depending
on the specific parameters of the system@10#, the relative
stability of these three solutions leads to two bifurcation s
narios: either the mixed mode is always unstable while
Turing and Hopf states are bistable in a given domain of
control parameter, or the mixed mode is stable for value
parameters for which the Turing and Hopf modes are b
unstable. The coupling between the Turing and the H
modes thus leads to either Turing-Hopf bistability or a mix
mode with one wave number and one frequency.

The second main group of dynamics near the CTHP
sults from subharmonic instabilities@37–40# of the pure Tur-
ing or Hopf modes. Let us first consider the Turing mo
with wave numberkc . Close to the CTHP, its subharmon
mode with wave numberkc/2 may have a complex linea
eigenvalue with a small growth rate and a frequen
v@kc/2#. Near the CTHP, a resonant interaction between
two modes (kc,0) and (kc/2,v@kc/2#) can give rise to a
stable mixed state called a subharmonic Turing mixed m
s
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@40#, or also in short, a sub-T mode. This mixed solution
corresponds to a spatial structure with two wave numb
(kc and kc/2) oscillating in time with one frequency
(v@kc/2#). An analogous subharmonic instability can al
occur if the system is originally in a pure Hopf state wi
frequencyvc . If the control parameter is increased, a res
nant interaction between this Hopf mode and the subh
monic mode (k@vc/2#,vc/2) can occur. The stable solutio
resulting from this interaction is then a subharmonic Ho
mixed mode@10#, or in short a sub-H mode characterized by
two frequencies (vc and vc/2) and one wave numbe
(k@vc/2#). In the particular case wherek@vc/2# is of the
order of the subharmonic wave number of the Turi
mode, i.e.,k'kc/2, another mixed state with two wave num
bers (k@vc/2# and 2k'kc) and two frequencies (vc and
vc/2) can be observed. This mixed solution is coined a s
harmonic Turing-Hopf mode@10# or also a sub-HT mode a
it results from the resonance near the CTHP of a sub-H mode
and a Turing mode.

In short, the spatiotemporal dynamics near a CTHP f
ture either bistability between steady structures and temp
oscillations or various mixed states ranging from the sim
Turing-Hopf mixed mode to different types of subharmon
modes. Let us note that, in large systems, each of these
lutions can undergo phase instabilities for given values of
parameters, giving rise to spatiotemporal chaos. T
Benjamin-Feir and Eckhaus instabilities are the well-kno
phase instabilities of the pure Hopf and Turing modes,
spectively@35#. Conditions have also been given for whic
the Turing-Hopf mixed mode@36# and the sub-T mode@40#
become chaotic due to a phase instability.

IV. SPATIOTEMPORAL DYNAMICS
IN A SEMICONDUCTOR MODEL

Let us now verify if the different predicted types of dy
namics can be recovered in models~1! and~2!. These equa-
tions are solved using finite differences and a forward Eu
algorithm. A systematic overview of the different dynamic
behavior can be gained by investigating the various regim
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FIG. 6. Localized structures near the CTH
C2 for T50.05, a50.02,D58 ~corrresponding
to D/Dc50.67), j 053.1, and different initial
conditions:~a! Turing-Hopf front.~b! Turing do-
main embedded between two Hopf states.~c! Lo-
calized Turing-Hopf structures. The current de
sity j (x,t) is shown as a density plot and as
three-dimensional representation.
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in a diagram ofa versusD/Dc ~Fig. 5!. In physical units,
this diagram corresponds to the ratio of time scalesta /tu
versus the ratio of the squared length scalesl a

2/ l u
2 of the two

variablesa and u, respectively. By normalizingD by its
critical value Dc(a) for each a, we transform all
codimension-two Turing-Hopf points onto the straight li
D/Dc51. As discussed before, forD/Dc.1 the Turing in-
stability occurs first with increasingj 0, while for D/Dc,1
the Hopf bifurcation occurs first. Therefore, on the righ
hand side of the diagram, the Turing modes are expecte
be dominant near criticality, while on the left-hand side th
applies to the Hopf modes. For various points in the para
eter space of Fig. 5, model~1!-~2! has been integrated star
ing from random initial conditions. Typical space-time plo
which are observed at differentj 0 values near the Turing
Hopf pointC1 ~Fig. 3! are shown as insets. It should, how
ever, be noted that depending upon the initial conditions,
obtained asymptotic behavior can be quite different. Ifj 0,
and thusg, is chosen above the first instability thresho
gH or gT, andD/Dc is sufficiently far from the Turing-Hopf
point (D/Dc51), then the only patterns found are inde
pure Hopf oscillations@Fig. 5~a!# ~for D/Dc,1) or Turing
structures@Fig. 5~b!# ~for D/Dc.1). If D/Dc approaches
unity, the spatial and temporal modes may interact leadin
the various types of dynamics predicted theoretically. T
Turing-Hopf mixed mode with one wave number and o
frequency is recovered near the codimension-two line@see
Fig. 5~d!#. In large systems, the temporal oscillations of t
mixed mode might not be exactly in phase, as shown in F
5~c!. Some of the subharmonic mixed states have also b
obtained in our semiconductor model. Figure 5~e! presents
an example of the sub-HT mode characterized by two w
numbers and two frequencies. The original frequencyvc and
wave vectorkc are still visible in the alternating spatial an
temporal shift of the pattern by one period in space and
time. This is the periodic spatiotemporal spiking mode wh
was found and discussed previously@31#. We have now
gained a more profound understanding of its nature. It na
rally appears due to the interaction of spatial and temp
symmetry breaking instabilities close to CTHP’s.

Other types of dynamics occur at other points in t
to
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e
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(a,D/Dc) diagram@Figs. 5~f! and 5~g!# or when the bifur-
cation parameterj 0 is further increased. In particular, th
bistability between Turing and Hopf modes predicted the
retically is obtained for several values of parameters. In
bistability regime, localized Turing-Hopf structures such
droplets of one state embedded into the other or fronts
tween a Turing pattern and an oscillating region are co
monly observed@3,4,10#. In Fig. 5~f!, a spiking ‘‘droplet’’ is
embedded in a Turing structure, and in Fig. 5~g! a Turing
structure is embedded in a complex oscillating state.
much largerj 0 in the vicinity of the second CTHPC2, spatial
coexistence of a Hopf oscillation and a Turing structure
obtained~Fig. 6!. Depending upon the initial conditions, dif
ferent localized structures occur: a Turing-Hopf front with
fixed boundary between the two phases@Fig. 6~a!#, Turing
domains embedded between two Hopf states@Fig. 6~b!#, or
alternating sequences of localized Hopf and Turing doma
@Fig. 6~c!# are found. Similar behavior has been found
other two-component reaction-diffusion systems@3,4,10#.
Such localized, coexisting structures indicate that in t
range of parameters there is bistability between Turing
Hopf modes, in contrast to the mode mixing which is effe
tive at lower values, near the CTHPC1. It may be conjec-
tured that this different behaviour is related to the asymme
of the reaction term in Eq.~1!, as discussed in Ref.@30#.
There it was noted, for a slightly different model with on
one diffusion length and a global coupling term, that t
condition for spatial coexistence of two bistable homog
neous phases is satisfied at a value ofuco on the left-hand
side of the bistability range of thej 0(u) characteristic, while
spiking, in contrast, was only found on the very right-ha
edge of the characteristic. In fact,C1, where spiking and
mixed modes occur, is located at aj 0 value in the right-hand
corner of the characteristic~cf. the inset of Fig. 1!, while
C2, where localized bistable structures are found, lies in
left-hand corner close to the coexistence valueuco of the
model with one length scale. The asymmetry of model~1!-
~2! can be seen by plotting the period of homogeneous t
poral oscillations for two different values ofa ~see Fig. 7!.
The period of the oscillations varies strongly above the H
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thresholdC1 and this variation increases whena is de-
creased.

A detailed analysis of a bifurcation scenario as a funct
of j 0 is made in Fig. 8 for a given set of parametersa and
D and summarizes the above explanations. The stab
range of the different spatiotemporal patterns is schem
cally indicated. The Hopf oscillation persists throughout t
range of j 0 values between the two Hopf bifurcations~cf.
Fig. 3!. In the immediate vicinity of the thresholdsC1 and
C2, the period of the oscillations is that given by the line
stability analysis~compare the values forvc andkc found by
linear stability analysis at the Hopf or Turing instability, r
spectively, and the corresponding temporal and spatial p
odstc52p/vc andLc52p/kc listed in Table I!, while this
period increases strongly nearj 051.25~see Fig. 7!. The sub-
harmonic Hopf-Turing~sub-HT! spiking mode exists only
for low values ofj 0 nearC1, and localized structures and th
pure Turing mode are found at higher values nearC2. Note
that as the localized structures are due to a Turing-Hopf
stability, they exist in the range ofj 0 for which the pure
Turing and Hopf modes are both observed. The Turing-H
mixed mode with one wave number and one frequency
pears in a wide intermediate range between these two e
We have noticed that, nearC2, the wavelength of the Turing
mode is that given by the linear stability analysis. Ifj 0 is

FIG. 7. Period of the temporal oscillations as a function ofj 0 for
two values ofa. These periods are obtained by integrating mod
~1! and ~2! without diffusion such that the Hopf instability is th
only one possible.
n

ty
ti-
e

r

ri-

i-

f
p-
ds.

then decreased, this wavelength increases strongly, and
become almost twice the one predicted by the linear stab
analysis in the vicinity ofC1. This explains why all spa-
tiotemporal dynamics slightly aboveC2 exhibit periods and
wavelengths much greater than those predicted by the lin
stability analysis. By choosing different initial condition
multistability between some of these patterns can be real
as indicated. In general, all mixed modes disappear in fa
of either a Hopf or a Turing mode if the parametersa and
D are sufficiently far from the CTHP’s.

Further, it should be noted that the asymptotic patterns
preceded in general by transient spatiotemporal chaos w
random initial conditions are used, as analyzed in detail
Wacker, Bose, and Scho¨ll @31#, and that the transient time
are often so long that the asymptotic state is not observ
However, as pointed out before, all the different dynam
observed can exhibit phase instabilities under certain co
tions. A nonlinear stability analysis giving the conditions f
the occurrence of these phase instabilities in terms of
parameters of our model should be performed in order to
whether these spatiotemporal chaotic regimes are only l
transients or if they describe intrinsic dynamics of the s
tem.

s FIG. 8. Stability regimes of various patterns as a function
j 0 for T50.05, a50.02, andD58. ‘‘mix’’ stands for the Turing-
Hopf mixed mode with one wave number and one frequency. N
that localized structures~‘‘loc. struc.’’ ! are observed for values o
parameters where the Turing and Hopf modes are bistable.
2
7
7
6
0
8
5
4

TABLE I. Parameters used in the simulations (L5600 andT50.05 everywhere!. vc and tc are the
critical Hopf frequency and period, respectively.kc is the critical Turing wave number, andLc the corre-
sponding wavelength.

a D D/Dc j 0 vc tc kc Lc

Fig. 5~a! 0.0250 8.0000 0.81 1.2500 0.0354 178 0.1118 56.
~b! 0.0200 14.2993 1.20 1.1912 0.0316 199 0.0914 68.
~c! 0.0300 8.6352 1.01 1.2247 0.0387 162 0.1148 54.
~d! 0.0381 8.0000 1.12 1.2500 0.0436 144 0.1242 50.
~e! 0.0100 10.7245 0.49 1.1622 0.0224 281 0.0826 76.
~f! 0.0200 12.0353 1.01 1.1851 0.0316 199 0.0955 65.
~g! 0.0200 12.5120 1.05 1.1838 0.0316 199 0.0946 66.

Fig. 6 0.0200 8.0000 0.67 3.1000 0.0316 199 0.1057 59.
Fig. 8 0.0200 8.0000 0.67
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TABLE II. Comparison between the semiconductor activator-inhibitor system and the Brusselator c
cal reaction-diffusion system.

Semiconductor Brusselator

Bifurcation parameter g B
Ratio of diffusion coefficients 1/D Dx /Dy5s
Hopf threshold gH5T1a BH511A2

Hopf frequencyvc AaT A
Turing threshold

gT5SAT1Aa

D D 2 BT5(11AAs)2

Turing wave numberkc
2

AaT

D

A

ADxDy

Codimension-two Turing-Hopf point Dc5@(AT1a2AT)/Aa#22 sc5@(A11A221)/A2#2
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V. COMPARISON WITH THE BRUSSELATOR
MODEL

The behavior found in the reaction-diffusion model~1!-
~2! is quite similar to that obtained for the Brusselator mo
of chemical active media@41#

] tX5A2~B11!X1X2Y1Dx¹
2X,

] tY5BX2X2Y1Dy¹
2Y, ~17!

whereX andY are the concentrations of two intermedia
chemical species,A andB are the concentrations of the re
actants that are kept constant, andDx andDy are diffusion
constants.B is the control parameter. A straightforward com
parison between the Brusselator model~17! and the semicon-
ductor model~1!-~2! can be achieved if we consider the fo
lowing equivalences:

Aa5A, ~18!

D51/s. ~19!

The corresponding thresholds of instabilities and other ch
acteristics of the two systems are given in Table II. T
Brusselator also generically exhibits both Turing and Ho
instabilities, and hence allows for a CTHP. An importa
difference between the two models is that, in the Brussela
once (A,s/sc) is fixed, one has only one CTHP while in th
semiconductor model two CTHP’s exist for given values
(a,D/Dc).

Recently, the spatiotemporal dynamics occurring in
Brusselator near the CTHP has also been studied@10#. It is
interesting to note that, there, bistability~and related local-
ized structures! and simple as well as the subharmonic mix
modes have also been observed. In that case the spatio
poral self-organization is that of chemical concentratio
rather than of the current density in our model. In the Br
selator, the spatiotemporal dynamics near the CTHP
been classified in theA versuss/sc control parameter spac
wheres5Dx /Dy , i.e., in the ‘‘time scale’’ versus ‘‘space
scale’’ plane. Strikingly, this classification presents stro
similarities with the one shown for our semiconductor mo
in Fig. 5. As an example, the successive bifurcations d
played in Fig. 8 are analogous to some observed in the B
selator model~see Fig. 12 of Ref.@10#!. This similarity of
l

r-
e
f
t
r,

f

e

m-
s
-
as

g
l
-
s-

behavior might suggest that independently of the charac
istics of the reaction-diffusion system at hand, the spatiote
poral dynamics in the vicinity of a CTHP might be classifie
generically in a ‘‘time scale’’ versus ‘‘space scale’’ plane

VI. CONCLUSION

Starting from a generic semiconductor model which d
scribes charge transport through a semiconductor device
showed that the interaction of the two instabilities occurri
in this model~Hopf and Turing! yields complex spatiotem
poral patterns. As a result we can find a variety of interest
patterns which are the result of either bistability betwe
Turing and Hopf patterns or a mixing of these modes. So
of these structures, like the subharmonic Turing-Hopf sp
ing mixed states, have already been observed experimen
in p- i -n diodes@21#, but for the localized patterns and th
Turing-Hopf mixed mode there is, to the best of our know
edge, no experimental evidence yet. It is difficult to det
such structures in semiconductor experiments, because o
small size of the system and the high spatial and temp
resolution required. However, because of the direct mod
tion of the total current by those spatiotemporal patterns,
rich variety of possible spatiotemporal modes should be
considerable interest with respect to potential applicatio
e.g., like tunable semiconductor oscillators.

The stability of the different spatiotemporal dynamics o
served near the codimension-two Turing-Hopf point in t
semiconductor model can be explained in the framework
the amplitude equations formalism@10#. These types of dy-
namics are hence generic of the CTHP, and are qualitativ
similar to those observed near a CTHP in a chemi
reaction-diffusion model; however some structures wh
occur in the chemical model, e.g., the subharmonic Tur
mixed mode, have not yet been found in our semiconduc
model. Another difference is the large variation of the spa
wavelength and of the temporal period near the first bifur
tion pointC1 in the semiconductor model, an effect which
not observed in the chemical model.

We propose that a time-scale versus length-scale diag
might be an appropriate way for organizing the comparis
of other models featuring codimension-two Turing-Ho
points because it separates out the different scales which
flect the spatial character of the Turing mode and the tem
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ral character of the Hopf mode. In this sense, this type
diagram might be useful in looking for the predicted sp
tiotemporal dynamics characteristic of the coupling betwe
spatial and temporal modes in any model featuring an in
action between a steady instability~not necessarily the Tur
ing one! and a Hopf instability.
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